Fivishing lasl class
Lea lludrstond dofile forms as fus on apaces of maps. Q1 Wat is their dutrathe?

$$
\mathcal{L}_{x} \omega=L_{x} d \omega+d L_{x} \omega
$$

- Checte for fus
- Clecter for 1 Porms (lust dine)
- Both are dostrations \longrightarrow induction

$$
\mathcal{L}_{x}(\omega \sim \eta)=\left(\mathcal{L}_{x} \omega\right) \sim \eta+\omega r\left(\mathcal{L}_{x} \eta\right)
$$

Interpretation \leftarrow word w) corvers

- Apdy on $M_{x}(0,2)$

$$
\begin{aligned}
& \frac{d}{d t} \int_{=00} \int_{M \times t} \omega=\int \mathcal{L}_{M \times t} \omega \\
& =\int\left(d L_{t}-c c_{t} d\right) \omega \\
& =\int_{\partial M} L_{t} \omega+\int_{M} \dot{\omega}
\end{aligned}
$$

In pornicular, is $2 \mu=0$, and $d \omega=0$, then $\int_{\text {quet }} \omega$ dolsnit deand on t

Cboudloyg

Den

$$
\begin{array}{rlr}
\theta \text { is doned if } & 2 \theta & =0 \\
\text { lexut if } & \theta & =d u
\end{array}
$$

lech Clored forus are a sub-alyebren and exuct fours or an ideal;

DR $H_{Q}^{0}(M)=$ Cowa/oent is on alyelara w/ \wedge (flard to grone in siupdicial colondoyy)
ey fr $S^{\prime}+i=R[a] / a^{2}=0$

$$
a=[20]
$$

Ters Howotery
θ as fin on clocad eset wids $\rightarrow M$ loc. coust
M ipt k-wiw-g Su.ufld, w te-form

$$
\operatorname{Mop}_{\cos }(\mu, S) \xrightarrow[S e^{2} \omega]{ } \mathbb{R}
$$

rectiction

$$
M_{c o}(\partial \pi, 5)
$$

tongent vectar to $M_{p}(M, 2) \sim X$ aection of $e^{4} T S$ vorration

$$
\underbrace{M_{x} I}_{w-w-c} \rightarrow S
$$

Clarlisicution on cobardkom

- cloued
- Null-coburdort if all stientel-chithey ti's zero
- Euler cheracteriatsc obstruction

Ring pietwe
\#2 Languaye of monifolds firished
\#2 Recurouion geanory of ccerves oud surfures in \mathbb{R}^{3}
\#3 Use lougnage to gevoalize
(\#2) to li.far dowle
noids

Carves in \mathbb{R}^{2}. Cares in \mathbb{R}^{3}, Sorfures in \mathbb{R}^{3}
$C \leq \mathbb{R}^{u}$ viewed as Recmmion word.)

cones	'intringic	extirusic
Local thay		
Globerl thay		

$\|\overline{\text { safues }}\|$		

Pres $1 C$ is locally isometric to $\left(\mathbb{R}, 2 x^{2}\right)$
Γ
Suppone we abready have a local chart 4 , not necessurily isometric. Let

$$
\delta(t)=\int_{t^{2}}^{t} \psi^{\prime}(t) \mid d t
$$

Since α is regular, s is smooth and $\frac{d s}{d t}>0$. Therefore, it has an imerre $t(s)$, and

$$
\left|\frac{d \psi}{d s}\right|=\left|\frac{d \psi}{d t}\right|\left|\frac{d t}{d s}\right|=\frac{\left|\psi^{\prime}(t)\right|}{s^{\prime}(t)}=1
$$

Ruk ψ unique up to trouslation and reflection.
(This rute is the beginuing os a proos of:
Thum Every ronnected 1-ubld is asseonmphic to \mathbb{R} ar S'.
one prost: (D) wiot, metric is condate (dilate on exhanstion)
(2) If arrented, flow $\delta \frac{D}{2}: \exists: M \times R \rightarrow M$

Stres unce $\bar{x}\left(a_{i}\right): \pi \rightarrow M$
showinnge open a clored
(3) If not arrented, agdy to or. coveriny (sfill comeded)

$$
\longrightarrow M=\pi / 2 \text { ar } S / 2 \text { iconctites } \begin{aligned}
& \text { lail wuat here } \\
& \text { fived pl } \rightarrow S \text {. }
\end{aligned}
$$

Local extsincic theary of arlength-paremetized carnes:
Q: Clussify carces bcally y to rigid ustion of \mathbb{R}^{h}.
A: mearwed by toning (instructions for dotivig)
Canorical frove for \mathbb{R}^{2}

$$
\begin{array}{ll}
\psi:(a, b) \longrightarrow \mathbb{R}^{2} & \left|\psi^{\prime}\right|=1 \\
t(s)=\psi^{\prime}(s) & J\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
-b \\
a
\end{array}\right]
\end{array}
$$

DEn If $N(S) I \rightarrow \mathbb{R}^{2}$ paroun by ordength, let
$t(s)=\alpha^{\prime}(s)$ the tangent

$$
n(\zeta)=t(s) \perp \text { the normal }
$$

Then $k(s)=t^{\prime}(s) \cdot n(s)$ is called the sighed corveture of α.

$$
=\alpha^{\prime \prime}(s) \cdot n(s)
$$

Claim: K is the derivative of the angle of t :
Γ
Let $\theta(s): I \rightarrow \mathbb{R}$ he such that $t(s)=\left[\begin{array}{c}\cos \theta(s) \\ \sin \theta(s)\end{array}\right]$ (not unique)
then $t^{\prime}=\left[\begin{array}{c}-\sin \theta \theta^{\prime} \\ \cos \theta \theta^{\prime}\end{array}\right], n=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right] \Rightarrow k=\theta^{\prime}$
If you are driving the carve at whit speed, K is the angle of the steering wheel.

Ex: If $\alpha(\delta)=\left[\begin{array}{l}r \cos \frac{5}{r} \\ r \sin \frac{s}{r}\end{array}\right]$ is an corclength paras. of a circle of radius r, then $t=\left[\begin{array}{cc}-\sin \frac{s}{r} \\ \cos & \frac{s}{r}\end{array}\right], n=\left[\begin{array}{c}-\cos \frac{5}{5} \\ -\sin \frac{s}{r}\end{array}\right], k=\frac{1}{r}$.
Tum
Fundamental theoreen of local theory \& pone corves:

- For one function $k(s)$ on an internal I, there is an ardength-parcuntrizid carve $\alpha: I \rightarrow \mathbb{R}^{2}$ with corvat-relds)
- $K(s)$ determines $\alpha(s)$ unioguly up to rigid motions

$$
\theta^{\prime}=k
$$

$$
\alpha^{\prime}=t
$$

$$
\Gamma \quad K(s) \xrightarrow[\substack{\text { up to rotation }}]{\int} \theta(s) \xrightarrow{t=\left[\begin{array}{c}
\cos) \\
\sin , \\
\text { us }
\end{array}\right]} t(s) \xrightarrow[\text { up to troudection }]{\int} \alpha(s)
$$

Global theory of pone cones:
Den windy number for $c^{\prime} \leq \mathbb{R}^{2}$.
Thin (turning tangents) The winding number of a regular cloned curve is ± 1.
Equivalently, un injecting regular parametrized closed carne.
Also called a single closed curve.
Runt switching direction vegetates winding number.

Pf (Turning tougents)
 Γ

WLOG, base point $\alpha([0,1])$

$$
\operatorname{deg}(\sqrt{1}))=1
$$

$$
\begin{aligned}
& \gamma\left(t_{1}, t_{2}\right)=\frac{\alpha\left(t_{2}\right)-\alpha\left(t_{1}\right)}{t_{2}-t_{1}} \\
& \gamma: T \rightarrow S^{\prime}
\end{aligned}
$$

(1) $\gamma(t, t,+\varepsilon) \sim \alpha^{\prime}\left(t_{1}\right)$
$\Rightarrow \gamma$ (red carve) has degree $=$ winding \neq
(infect, γ extends contiveronsy to $2 T$)
(2) 8 (rouge cone) has legree 2π
(3) haustapic maps have the
same seyree.

Pf

$$
\begin{gathered}
8:\left\{0 \leq x_{1} \leq x_{2} \leq 1\right\} \rightarrow \mathbb{R}^{2} \\
T \text { wfd } u \text {) } \\
\text { comess }
\end{gathered}
$$

$$
\gamma\left(t_{1}, t_{2}\right)= \begin{cases}\frac{\alpha\left(t_{1} s-\alpha\left(t_{2}\right)\right.}{t_{1}-t_{2}} & t_{1} t_{2} \\ \alpha^{\prime}(t) & t_{1}=t_{i} t .\end{cases}
$$

Mate deque $=\int r+20$

